Our focus is on two research areas that are somewhat related to each other: pluripotency and tumorigenicity. The interface of these two phenomena is immortality: pluripotency represents normal immortality in vitro (pluripotency exists only transiently in vivo), whereas tumorigenesis is the abnormal, uncontrolled proliferation of cancer cells both in vitro and in vivo.
- Pluripotency
We are interested to figure out the mechanisms underlying the immortality of pluripotent stem cells (PSCs), i.e. embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) in order to exploit the obtained knowledge for efficient and safe generation of PSCs for potential regenerative medicine applications in future. Our mechanistic studies are focused on microRNA and lncRNA biology as well as small-molecule-based alterations in gene expression. Therefore, we aim to derive safe PSCs using small molecules and microRNAs to eliminate the need to use viruses and/or genomic integration. We also aim at generating safe iPSCs with high efficiency, since safe approaches to iPSC reprogramming usually suffer from extremely low efficiencies. We are also working on pre-implantation embryogenesis, as PSCs are present in embryos only during this time window. Notably, although PSCs hold great promise in regenerative medicine, the residual PSCs within the PSC-derived differentiated cell population might lead to tumor formation in patient in long term. We are currently developing strategies to remove tumorigenic PSCs from the differentiated cell populations in order to ensure the safety of PSC-based cell-replacement therapies.
- Tumorigenicity
Our research on PSCs and their tumorigenic potential along with the fact that we all are witnessing how a large number of people and especially our dearest and nearest people die of cancer, encouraged us to start focusing on tumors and cancers as a top priority. In Iran, cancer has had an increasing incidence and mortality rate in recent years. In Iranian men, stomach cancer, and in Iranian women, breast cancer constitutes the most prevalent cancers. We are starting to focus on these cancer types as they are also highly prevalent and deadly in other ethnicities and societies as well. Since cancers related to digestive tract are more common in Iran, we have put more focus on these types of cancers, particularly gastric and esophageal cancers. We want to fight cancers using two main approaches:
- Early cancer diagnosis
The majority of cancers, including digestive tract cancers, are diagnosed only when the tumor has grown into a large size and metastasized to other parts of the patient's body. In such situations, it is often too late for the clinicians to be able to effectively help cancer patients. Patients with esophageal cancer, for example, mostly die within 1 year of diagnosis, because the cancer is usually not detected in an early stage. The benefit of early detection of cancer is that it remarkably enhances the chances for successful treatments in an early stage, thereby saving many lives. One of our important missions is to try to detect cancers in an early stage through finding early biomarkers, such as circulating microRNAs, in body fluids. To this end, we are trying to develop biosensors for fast, sensitive, and specific biomarker detection. Our plan is to bring biosensors to the bedside for potential point-of-care testing. Effective point-of-care testing will lead to more successful cancer therapy.
- Cancer therapy
The majority of cancers are currently not diagnosed in an early stage or are too difficult to be effectively targeted, and therefore kill many patients. Current strategies appear to be ineffective or less efficient, since there is currently a high rate of cancer mortality worldwide. To kill cancer cells, we are interested in using targeted therapies and combinatorial therapeutic approaches exploiting the potential of microRNAs and siRNAs along with small molecules modulating RNAi and other pathways. We are also interested to use natural compounds along with other regimens to increase the chances for successful therapy. Cancers are too complicated and we need to understand the biology of cancer cells more accurately. We are also highly interested to investigate the mechanisms of cancer development and metastasis. We hope that our collective efforts contribute to making a world with less pain and more happiness in future.